

Exploring Distal Enhancers Through

Molecular Roots of the Social Brain

- Project to identify gene networks that respond to social stimuli in mice, honeybees, and stickleback fish.
- Utilized RNASeq and ChIP-seq after social stimulus to identify differentially expressed genes and differentially accessible regulatory elements
- In Honeybee, studies revealed stronger differences in histone modifications between colonies, than due to social stimuli
- Additionally, it is always difficult to assign distal enhancers to the genes they regulate

Differential Histone SNPs

- Can SNPs explain differences we see between colonies in histone peaks?
- Recent study in humans examined SNP preference in pooled histone and TF ChIP peaks
- Can we apply a similar approach to data we have already collected from honey bee and mouse?
- Can we also use this data to help link distal peaks to genes?

Pooled ChIP-Seq Links Variation in Transcription Factor Binding to Complex Disease Risk

Graphical Abstract

Authors

Ashley K. Tehranchi, Marsha Myrthil, Trevor Martin, Brian L. Hie, David Golan, Hunter B. Fraser

Resource

Correspondence

hbfraser@stanford.edu

In Brief

Examination of thousands of human genetic variants that affect transcription factor binding demonstrates a role for natural gene variation in chromosomal architecture and illustrates the efficiency and economy of using pooled samples for these analyses.

Differentially Enriched Histone SNPs Pipeline

- When we do ChIP we collect input DNA, basically genomic DNA
- Pooling of all input DNA gives ~30x
 coverage → call SNPs in population
- Also pooled control H3k27ac peaks from each colony → call peaks
- ► Then checked SNP frequency in gDNA vs. inside Histone peaks

Two Possible Histone SNP Effects

Genomic DNA has a particular SNP frequency in the pool, eg 50%, but Histone peak has a significantly different SNP frequency, eg 90%

One of the two colonies has a SNP, but the other colony does not. Colony with the SNP has a peak, but the other colony does not.

Variation could be from heterozygous DNA OR from multiple individuals in pool

Example: Unnamed Zinc Finger

Histone peak is only present in colony that has SNPs One SNP allele is preferentially found in 83% of histone reads vs. 48% of genomic reads

Second Approach: BL6/CD1 Hybrid Histone SNPs

Generating a Hybrid Mouse line allows for testing with less coverage

Example: Med13l (100/0 SNP)

Future Directions

- ► Re-run improved Histone SNP calling pipeline on honeybee dataset, taking **ploidy** into account
- Bring in gene expression data to see if Histone SNPs also change gene expression pattern of nearby genes, allowing us to link distal peaks to the genes they regulate
- Identify co-incidence of Histone SNPs with regulatory motifs
- ▶ Use CRISPR to test hypotheses and validate methods in vivo
 - ▶ Eg. Introduce a SNP predicted to be influential to a primary cell line and see if that alters nearby chromatin and expression

Acknowledgements

MRSB Group IGB GNDP Theme

- Lisa Stubbs
- David Zhao
- ► Gene Robinson
- Alison Bell
- Michael Saul
- Arian Avalos

Keck Biotech Center

Alvaro Hernandez

Stubbs Lab

- ► Lisa Stubbs
- ► Huimin Zhang
- Joe Troy
- Soumya Negi
- ► Jae Eun Yoo
- Wei Chun

Alex Pohlman

SIMONS FOUNDATION

