
Leading Edge

Voices
Expanding the Biology Toolkit
Fun with Chemistry
Carolyn Bertozzi
Stanford University & HHMI

Whether you call it biochemistry, molecu-

lar pharmacology, or chemical biology, one

thing we can agree on is that chemists

have long sought to advance the biological

sciences. Through development of reagents,

instruments, algorithms, and technologies,

chemistry brings to biology the ability to drill

down to molecules, bonds and atoms—the

scale of matter at which all living things

converge on common principles. But one

often hears the dogma that ‘‘you can teach

a chemist to do biology but biologists cannot

learn to do chemistry.’’

Not true. There have been developments

at the forefront of chemistry that make

chemical technologies eminently accessible

to biological researchers. Did you know, for

example, that you can perform chemical re-

actions inside cells or model organisms

and transform matter like a card-carrying

synthetic chemist? Youmight use such ‘‘bio-

orthogonal chemistries’’ to monitor de novo

DNA biosynthesis using the reagent 5-ethy-

nyl-2’-deoxyuridine (EdU), protein synthesis

with azidohomoalanine (AHA), or glycan syn-

thesis with N-azidoacetylmannosamine

(ManNAz). You can genetically outfit your

protein of interest for selective chemical re-

action with small-molecule fluorophores us-

ing HaloTag, SNAP-Tag, LAP-Tag, and

related chemical innovations. Chemists

have even made it possible for biologists to

synthesize large proteins by assembly of

peptide fragments.

These chemical innovations have been

honed for transition into the hands of biolo-

gists, sometimes via commercial kits. So

open your mind to chemistry—you can,

and sometimes should, do it.
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Mathematical Laws of Randomness
Hao Ge
Peking University

The stochastic processes of transcription

and translation inside cells can be described

mathematically by a Chemical Master Equa-

tion (CME) model, typically simulated by the

Gillespie algorithm. Recently, a simple two-

state CME model combined with the in vitro

single-molecule experiments has revealed

the molecular basis for the transcriptional

burst under an induced condition in prokary-

oticcells (Chong,S., et al.,Cell158,314–326).

The large deviation principle, a highly so-

phisticated mathematics theory developed

only in the late last century, provides an en-

ergy-like function (called landscape function)

characterizing the non-equilibrium dynamics

of living cells. The landscape function pro-

vides a rate formula for the phenotype transi-

tion—very similar to Arrhenius equation for

describing the chemical reaction taught in

most college chemistry classes. Inspired by

many recent experiments, this general

framework has recently been applied to the

case in which the gene-state switching is

neither extremely slow nor exceedingly rapid

(Hu, J.S., et al., Phys. Rev. Lett. 114,

078101). This rate formula nicely explains a

‘‘transcriptional noise enhancer’’ therapy

for HIV reactivation: why a class of small

molecules that enhance the gene-expres-

sion fluctuations but keep the mean tran-

scriptional activity unaltered can significantly

reactivate the latent cells (Dar, R.D., et al.,

Science 344, 1392–1396). Finally, the most

probable transition path between pheno-

typic states in multi-dimensional stochastic

models, usually not possible to be accurately

estimated intuitively, can be numerically

obtained, illustrating the power of mathe-

matical methods in understanding random

biological processes.
vier Inc.
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Genomics research is undergoing a para-

digm shift thanks to the development of a

myriad of new high-throughput systems for

massive data acquisition. These data come

with the promise of unprecedented insights

into fundamental molecular and cellular

mechanisms and the potential for devel-

oping models that explain how genomes

and regulatory networks function during

development and how they differ across

species and change in disease state.

Unfortunately, the intrinsic value of such

multimodality data is usually unknown, as

the systems studied are highly complex, dy-

namic, and stochastic. Hence, the following

question emerges: what methods should

we use to evaluate the statistical sufficiency

of the data and make the most informative

and accurate inference and prediction? To

address this question, computational scien-

tists have to engage with biologists in a

dialogue, which can be jump-started by a

number of exciting ideas in ‘‘evidence-

based’’ statistics, information theory, ma-

chine learning, and computer science. Small

sample detection/estimation, information

theory, and graphical models may enable

us to understand fundamental inference

limits; (causal) compressive sensing matrix

and tensor methods may enable the use of

sparsity priors; correlation clustering may

help in identifying key biological network

modules while rank aggregation and prioriti-

zation may help with both removing varying

data scales and designing biological experi-

ments; deep learning algorithms may enable

unprecedented model development.
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